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ABSTRACT

Time harmonic modal electromagnetic fields in two-medium half spaces
are investigated. For practical and numerical considerations, the primary
sources of the modal fields are chosen to be the spherical multipoles, and
the potential vectors are z-directed. It is shown that modal fields of
such combination are not able to represent a conventional spherical modal
field. The horizontal rotating potentials are added to ensure proper
representatioh and fast convergence.

The recurrence relations which transform the spherical Hankel-Legendre

' functions into the Fourier-Bessel integrals are derived. The secondary
'i fields of the Sommerfeld's type are obtained for all spherical multipole
! sources, and the added horizontally rotating potentials. The combination
of the modal fields are capable of representing arbitrary electromagnetic
fields resulting from radiation and scattering problems.

A Results are given for scattered surface fields of a buried finite

dielectric cylinder.
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I. INTRODUCTION

Modal expansions of electromagnetic fields are fre-
quently a mathematical necessity in classical solqpiops )
of electromagnetic problems. Recent development of the
unimoment method of computation has also made extensive
use of modal fields, which satisfy the radiation con-
ditions outside spherical surfaces [1l], [2]. 1Indeed,
the application of the modal fieldsd is essential in
terminating the finiée differenceor the finite element
equations at a spherical surface. It is quite evident
that the unimoment method‘can readily be applied to
scattering or radiation problems involving air-ground
half-spaces, if the modal fields satisfying the air-ground
interface boundary conditions are available.

The integrals which represent the potentials of a
dipole near an air-ground interface are known as Sommerfeld
integrals, which were first derived by Sommerfeld in 1909
[3] and 1926 [4]. They have been the foundations of
research in electromagnetic radiation by sources near a
lossy ground ever since. The objective of this paper i;
to investigate the generalization of Sommerfeld integrals
for the modal fields so that they can represent arbitrary

electromagnetic fields near an air-ground interface.
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The generalization of Sommerfeld integrals has been
given by C.T. Tai [5], whose systematic approcach to
Dyadic Green's function very elegantly arrives at modal
fields of Sommerfeld type. However, Tai's generalization
entails cylindrical sources, i.e., each of the exterior
modes is singular along the z-axis. Using Tai's modal
fields to terminate the finite element mesh, one would
have to use an infinite cylinder as a terminating surface,
such as shown in Fig. la. The matching points between
the finite element solutions and the modal fields would
spread fairly far along the cylinder, and the numerical
objective would be finding a continuous function £())
for the values of )\ along the integration path. The
above particulars are not attractive features for compu-
tational purposes. The ideal matching surface should be
finite and the ideal numerical objective should be a
discrete set of coefficients. 1In this paper we shall
attempt to generalize Sommerfeld integrals based on
spherical multipole expansions. The numerical application
of such generalized Sommerfeld integrals should result in
spherical matching surfaces, as shown in Fig. 1lb, and
discrete numerical objectives.

The fields concerned in the following discussions

are all assumed to have the exp (jwt) harmonic time

dependence.
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II. MULTIPOLE EXPANSIONS AND VERTICAL VECTOR POTENTIALS

The first step in deriving Sommerfeld integrals is
to decide what type of primary sources are to be used.

The electromagnetic fields in a homogeneous isotropic

medium can usually be derived from the electric and

magnetic vector potentials, Re and Km as follows

-)_ -> 1 ->
E-VXAm+:TEVXV><Ae (la)
§=VxK—~Jl—VxVme (1b)

where ¢ and u are the permittivity and the permeability

0
€
=

of the medium, w 1is the angular frequency and the potentials

> -> :
Ae and Am both satisfy the vector Helmholtz equations. The above
potential representations are complete in homogenous source free
medium where the fields derived from the gradient of a potential

vanishes [6].
Our intention to obtain spherical matching surfaces
in numerical application limits our option to spherical

multipoles, i.e., the primary fields will be derived from

>
A

=) ) o
e m,n .
z 2: E: %-hQZ)(kr) Pi(cos 9) e Jmo

->

where k = w/le is the wave number and 2z is a unit vector
normal to the ground plane. It is noticed that the vector
potentials are z-directed rather than the conventional
radial vector. The direction of the potential vector is
dictated by the need to satisfy the continuity conditions

of the planar air ground interface for the total fields.

The use of the conventional spherical potentials using
radial vectors does not lead to expressions which are
compatablewith air-earth interface field matching.

This particular combination of spherical harmonics and

4
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z~directed potential vectors is not new. The complete
expression has been given by Tai [5 Appendix B]; however, the
modal fields derived from it have never been applied to solve
specific problems. For the convenience of the further
discussions, the fields derived from(2) will be named as

%) ana (%

hd ->
m,n m,n Modes for A, and A respectively.

The modal electromagnetic fields derived from (2) are
+>TM(2) >TM(z) +*TE(z}) $TE(z)

denoted by em,n , hm,n and e ’ hm,n . The definitions

n
of these notations are listed in Table 1.
One of the most important questions akout the mcdal
fields derived from (2) is whether the expansions can rep-

resent arbitrary radiating fields. The follow-

ing derivations will show that the modal expansions of a

and TE(Z)

(2)
F3s! m,n

class of radiating fields by ™ result in
diverging series. Such a class of radiating fields include
the conventional spherical vector wave modes. It is found
that proper additional terms may be added to (2} to make
the modal expansion series convergent.

For clarity in the ensuing discussions, we should examine

the conventional curvilinear spherical vector waves obtained

from
A w
e N o %m,n (2) m .
R Y ) h ) (k) PT(cos 0) &I™ (3
A - =
- m n=|mj| bm,n
> . .
where r 1is a radial vector. These expansions were proved




to be complete in the homogenous source free region where
the divergence of E and H vanishes (6] and have been applied
to numerous practical applications. We shall name the ex-

pansion modes of (3) as TM(r) and TE(r) for Ke and Km

m,n m,n
respectively. The modal fields are denoted by gTM(r)’

m,n
ETM(r)' and ;TE(r)’ KTE(r)
m,n m,n m,n

as shown in Table 1.

(r)' TM(r)

We first study the singularities of TE ™) m,n

and TE(Z) ’ TM(Z) fields as r - 0. The spherical Hankel
m,n m,n

function and its first derivative have singularities at

r -+ 0

lim h{? (kz) > (kr)™"
r->0

a h'? (xr)
lim a—kr—— + -j (kr)

>0

-(n+1)

Hence the mcdal electric fields have the singularities

as follows:

. 2TE(z) , _-{(n+l)
lim em,n r

r+0

.o 2TM(z) | _~(n+2)
lim em,n r

r+0

lim oTE(r). -n
m,n

r-+0

lim &TM(r)

r+0

- (n+1)
m,n r
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The expansions of different numbers of m are
decoupled because the Fourier series modes are mutually

orthogonal. For a particular value of m, we found that

as r+0 TE(Z) and TM(Z) have a singularity sequence of
l

r-(|m|+1) —(lm|+2) (r)

... whereas TE n
~Iml, =Cml+1)

(r)
and TMm,n have

.+« Therefore the lowest singularity

(2) TM(z)

modes. his
m,n’ m,n odes T

term =~ 1™ s missing for the TE

suggests that additional terms of proper singularity

(z) (z)

must be added to TE n and TM modes to represent

arbitrary radiating fields.

(z) (z)

To show that the TE and TM n modes do not yield
converging series when expandlng a certain class of
radiating fields, let us take a simple example of the
fields radiated by a horizontal rotating dipole. The

vector potentials of the dipole can be written as

A, = &+ 35D 02 xn) (4)

The electromagnetic fields generated by (4) are found
to be exactly the same as those of the TM{?{ mode. We
shall find the coefficientsa , 8, in the following

expansion

2TM(r) >TM (2) e a1 2TE(2) '
e; 1 nzlExnel n+ B3k € n ] (5)
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+TM (2) +>TE (2)

It should be noted that neither em n nor em n modes are ortho-

[4

gonal on the surface of a sphere.

By using the relations given by Tai [S5, p. 228], such as

»TE(z)= . *TM(r) + n *TE(r) n+l gTE(r) (6a)
€1,n J ETHi‘)k €1,n (Tn+D) (aF D) €1,n+l T (Zn+Dn €1,n-1

*TM(z)_ 1 +TE (r) n +TM(r) n+l *TM(r)
©in I gmmm kR e,n T EnFD D ®1,n+1 T(Zn+Dn 1,n-1 (6b)

and substituting (5) into (6a) and (6b), one can solve ay and

Bn via a set of linear equations involving a tri-diagonal matrix.

The results are

a, = 0 if n is odd (7a)
n
= + 1
. (2n+1) . :
(-1) Aty if n is even
Bn = 0 if n is even (7b)
n-1
12 . (2n+1) : .
{(-1) AlnFl) if n is odd

Examining (6a) and (6b) one finds that a, and Bn have

asymptotic behavior of O(n-l) for large orders of n. The

asymptotic form of the spherical Hankel function for large
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n (7, eq. 37} is

/ 2 (n+%)

. 2) ‘ 1 (n+%)
lim h “% (kr) = J\Kkr)(ﬁ+%) *\e-(kr) >

n-+o

where e 1is the base number of the natural logarithm. Com-

bining the slowly convergence of an and Bn and the rapidly

_increasing of qn(Z)(kr) at (n + %0, it is

thus shown that the expansion of (5) diverges for all kr.
Similar conclusions can also be obtained for other TMérL

14
modes.

The fact that TM(Z) and TE(Z)

ield div i series
m,n m, n vie diverging se

when expanding the field of a rotating dipole and the TMér;
’
(r)

and TEm,n

modal fields has made the expansion of (2) un-
usable for general applications in scattering problems. To
remedy this situation, additional terms of proper orders of
singularities must be included in (2). It was found that
the field of a rotating dipole given by (4) can provide the

singularity needed for m=1. Hence, we suggest adding two

circularly polarized vector potentials, e.g.,

R

>

A

=G5 Y m %h““?" (kr) 2D (cosp)e®ime (B
- m=0 ’

im

”~ Fal . °
where x and y are unit horizontal vectors on the rectangular

coordinates. These rotating modes will be named RTM

t (m+1)
and RTE:(m+1) for Ke and Km respectively. The modal
. . +RTM +RTM +RTE
fields will be denoted by e:(m+l)' ht(m+1) and €y (m+l) ’

9

TN ST e




. - Al ameme - PP

L S

*RTE
By (1)

to the lowest order modes for each m of the conventional

Indeed, these rotating modal fields are similar

spherical vector waves. That is, they are similar to the

modal fields of TME;)m and TEE;Zm
- ’ -

The proper general solution of Maxwell's equations out-

side a sphere in terms of (2) and (8) is thus

+ TE(z) *TM(2)
) @« em’n em’n
=L 2 v
nee neTal 2TE (2) men TM(2)
m,n m,n
o ;RTE ;RTM
m m .
=1 "\ gRTE m TRTM |
+RTE *RTM |
© e
=-m -m !
+ }: Y +n_ '
= | " \gRmE n 2RTM |
m= -m -m |
!
(9)
and
where Sn ! Sm,n’ Ym ! M

expansion are defined in Table 1.

!
|
are the expansion coefficients. The modal fields of the J
!
f
1

It can be shown [8]) that any one of the conventional }

spherical vector modal fields can be expanded in a finite

number of terms by using (9). The convergence rate of (9)

(r) (r)

m,n and TE

is the same as that using T™ modes when

solving the-same problem,
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Table 1. The Definition of the Primary Modal Fields

MODES VECTOR POTENTIALS MODAL FIELDS
Tziétn Xm 2 1 héz)(kr)Pg(cose)etjm¢ Ezif;)- inm
27 5 by oo,
Tmigin R, = 2 £ n{? ke P (cose) 3™ ‘fzf:)= i vxva = -zzhfﬁfi)
e ok T
RTE, Km = (%X*39) i h(z; (kr) 3533 = Vme
Ppop (cosg)e I (M l)? ERTE = j L vxvxd
br.tm Ry = (R239) ¢ .(2; (kr) et = —35% vxvxk = -z 2RRTE
Pﬁ-i (cosd)e *1(m=1)0 ZRTM _ o % _ 2RTE

: hr‘f)(kr)?‘:(cose)e*j’“¢

(2) m +imé
hn (kr)Pn(cose)e




III. THE FOURIER-BESSEL INTEGRALS OF hiz)(kr) PT

il

(cos8)

The multipole expansions discussed in the last
section are for the primary fields, which are valid in an
infinite uniform space. To find the fields of the multi-
poles near an air-ground interface, the multipole fields
must be expressed in cylindrical harmonics so that the
.secondary waves can be derived. We shall derive the
Fourier-Bessel integrals for the spherical Hankel-

Legendre functions in this section.
Since both h;z)(kr) P: (cos 6) et3m¢ and
3, (Ap) e VAT - k% |z| e IM® . e solutions of the same scalar i

Helmholtz equation

72y + k% = 0 (10)

.

one may represent the spherical harmonics by the superposition

of a complete cylindrical eigenfunction [6,9]1. That is

- ©

m = n-m =
héz)(kr) Pl (cos 8) [ sgn (z)] J{ fm,n(k) In(AP) e u,z,dA (11)

-

where u = Az - kz, Real(u) 2 0, and sgn (z) = 1 for positive

z and -1 for negative z. The function £, n(} is an amplitude

function for the transformation. The first special case of the

Fourier-Bessel transform in (1l1l) is for m=n=0 of a dipole, as shown
by sommerfeld in (9].

-jkr
kr

(2) _ . e . A -ulz]
ho (kr) = j J x4 JO(XQ) e di (12)

g




Hence the function

fo'o(k)

£5,0M

The functions for other orders of m and n can

by recurrence relations.

='_X_
J ku

is

(13)

The following two recurrence relations are proved in

Appendices A and B, respectively.

Recurrence Relation 1.

2
h£+i (kr) Pﬁii (cos 8) = -(2m+1) 3%3 [h£2)(kr) Pﬁ (cos 8)]
2
* Krsine (hg ) (kr) 2L (cos 6))

Recurrence Relation 2.

) (2) m
Tkz [hn (kr) P (cos 6)]

_ {n-m+1) |, (2)

(14)

{n+m) (2)

- Anim) m
= nsly Pp-1 (kr) P _; (cos 8)

m

(kr) Pn+l

(cos 8)

(15)

{(2n+1) n+1

The above recurrence formulas are unique in

that they relate spherical modal potentials rather than

single variable special functions.

The physical interpre-

tations of these formulas are also of interest, but we shall

not attempt to discuss these here.

be obtained




It is noted that the first recurrence relation raises
the order of m , and the second raises n for a fixed
value of m .

The formulation of £ {A) 1is related to £ (\)

m+l,m+1 m,m
by substituting the integral of (ll)into the first recur-

rence relation (14). That is

-]

-u|z|
jfm+l'm+l(>\) 3. (A0) e a

0
e 3T_(Ap)
- - m P om -ulz]|
= (2m+1) ffm,m()\) Wp ko Jm(Kp) e dAa
0 .
- ' LA -ulz]
=  (2m+l) ‘[ fm:m(x) X Jm+1(lp) e ai (16)
0
This relation holds for all values of p and 2z, hence
A
fm+1,m+l(k) = (2m+1) % fm’m(k) (17)
Using the initial formula of f0 0(l) in (13) and the relation
14
(I77, one has a general expression of £ md) as follows:
[
_ x| A m+1 1 _m
fm'm(x) = j (f) 3 Pm(O) (18)
for m=0, 1, 2, ... . Because P:_l(cos 8) £ 0, we have
fm,m—l(k) =0 (19?

Similarly, by substituting the integral of (1l1),the

second recurrence relation (15) leads to the following

relation:
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Recurrence Relation 3.

_ (2n+1) u (n+m)
frone1 N = momEDy [k fn,n ) * onEIT fm,n—l”‘)] (20)

A complete formulation of fm'n(k) can readily be obtained by
(18), (19) and the third recurrence relation (20). The
recurrence relations (17) and (20) resemble those for the
associated Legendre functions. We found that fm n()\) can

’

be written in a closed form to be

f ()

- s(n=m+l) XA _m  _. u
m,n =3 ku Fn Ik (21)

Although (21) may also be obtained by other approaches,
they have not been explicitly shown in open literature.
The approach we have presented here is more direct and
computationally appealing than integration of plane waves in
the complex plane.

It is worth noting that the Fourier~Bessel integral

is equivalent to the Fourier-Hankel integral [9].

’

-m . L1 (2) -ulz]
ni?) (xkr) B} (cos 9) = lsen (z)1* ™ zf g ) H (o) e 4

(22)
The integration paths and branch cuts in the complex Ai-plane
for (11) and (22) are shown in Figure 2. The path P; is a
permissible integration path of the Fourier-Bessel integral

(21), and path P, + Py is for the Fourier-Hankel integral (22).

15
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Iv. THE GENERALIZED SOMMERFELD INTEGRALS

Let the multipoles be at a depth d underground.
The coordinates in the meridional plane are shown in Figure 3.
The relative dielectric constants of regions I and II are
€ and €, respectively. We assume the same magnetic

permeability in both regions, although it is straightforward

to consider the case of different magnetic permeabilities.

-

The vector potentials in regions I and II are A;

- -
I) and AII (or AéI

<>
(or A
e m

). The fields in region II are

decomposed into primary and secondary waves as follows:

KII - KPri . KSec (23.a)
m m ul

RIT _ XPri + pSec (23.b)
e e e

The primary waves are the multipole fields in an infinite

space, which have been discussed in previous sections. The

secondary waves are the fields due to the air-ground interface.
Owing to their basic differences in the formulation,

we shall discuss the derivations for TE(z), TM(z), RTE, and

RTM fields separately.

1. The Vertical Magnetic Multipoles, TE(z), . Fields
The primary field for TE(z)+m n in region II are
Pri _ ,Pri _oa W (2 m timé
A A2 =20 " (k,r) P (cos 8) e (24)

16




r'lr T ——— . ——— — : . — e . ‘77' e e - :.,

Using the Fourier-Bessel integral (ll)derived in Section III,

the primary fields become

f Pri £yme -uy |z
: Al = e fm'n(x) Jm(kp) e dx (25) ;
Y »
!
where f (1) 1is given in Section III, and u, = VAZ - k2 |
m,n ! 2 2

Real (u.) > 0. Note that we shall use (25) only when 2z>0 in the
followidg derivations.

The secondary field in region II can be represented by

the following complete cylindrical field integral

- -]
. u, (z-d)
2*Sec _ ,Sec _ +Jm¢ 2 6
R5eC —aSC 3 - 2 e f 9(A) I_(hp) e da (26)
0
! The field in region I is represented by
-]
. . =u, (z-4)
I _ Al = imé 1 7
A =n,2=12ec¢ Jf h(A) J_(Xe) e ax (27,
. 0
where u, = XZ - %2 Real (u,) 2 0
1 1’ 1’ = 7

The functions g()X) and Kh()\) are obtained
.o by employing the boundary conditions on the air-ground inter-

face. The corresponding electric and magnetic fields from

the TE(Z):m,n vector potentials are
. oA

= pL o :

E=:p BT (28 .a)
] 2 2
3°A .. 0A 9 A

- =1 . m o, . Jjm %m ( 2 m)

i Too [} 53zt 0 o am toAlka ¢ 322] | 28 .b)

17
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The sufficient conditions for the continuity of tangential

electric and magnetic fields (Ep, E¢, Hp, and H¢) on the
interface between regions I and II are
A; = Aél (29.a)
z=d z=d
and
oAl aAlf,‘I
—_ = | 29.b)
3z = | 5z (29.
z=d z=4

Substituting (23.a), (24), and (27) into (29.a)
and (29.b), we have

Y -u,d
*imé v - =
e ~[ [fm’n(x) e + g(X) h(Aﬂ J (Ae) dr =0
9 (30.2)
etjmq’f W £ () e : - u,g(A) - uh(A)] I (Ae)dd =
2 m,n 2 1 m
0
(30.b)
The conditions of (30.a) and (30.b) must be true for all ¢
and P , hence
-u2d
fan(M) e + g(A) - h(\) =0 (3l.a)
-uzd 31
uzfm,n(A) e - u,g(n) - ulh(k) =0 (31l.b)

The functions g(A) and h()) are obtained by solving

(3l.a) and (3l.b).

0




u2 - u -u,.d

= 1 2
g = = £ (M) e (32.a)
2 1l
2u2 -uzd
h()\) = Ez_+q fm,n(k) e (32,b)

Replacing g(X) and h(X) in (26) and (27 by the above

expressions, we obtain the solution of TE(z),, , filelds

1

for 2z >d and z < d as follows

. r: 2u -u,d~-u, (z-4)
I _ jmé 2 2 1
Km =32 e f TR fa M) I (00 e dx
0 (33.a)
XII = 2 etjm¢[h(2)(k r) ™ (cos 8)
m n 2 n
ra u, = uy —u2(2d—z)
+ '/—F—u—l fm’n(A) Jm(kp) e di (33.b)
o]

Taking m =0 and n = 0, one finds that the solution

given in (33.a) and (33.b) for TE(z) is exactly the same

0,0
as that of the Somwerfeld integrals for a vertical magnetic
dipole buried underground at a depth of d. Note that the

Hertz potentials, ;e and ;m, as used by Sommerfeld and the vector
potentials used here differ by constant multipliers as

A jweT
= JweT
e J e

F juuT
= T
m JWUT

19
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2, The Vertical Electric Multipoles TM(Z):m,n Fields
The general expressions for fields of TM(Z):m,n in
regions I and II are identical to Egs. (23), (24) and (25) by
replacing Am with Ae .
The electric and magnetic fields corresponding to the

TM(z)+m n vector potentials are
- (4

2 2
3°A . 3A 3°A
£ =1 B S+ 8B 242 k%A + ¢ (35.a)
jwe 322 p oz e 322
. 3A
= _ A Jm e
H = tp 5 Ae + % 35 (3§.b)

The sufficient conditions that the tangential components of
electric and magnetic fields be continuous on the interface

between region I and II are

I IT1
L B_A_e_ = _l_ BA—e_ (:36 a)
gl 3z 2=d 82 3z z=d

I I
A = |A (36.b)
[ e] z=d [ e]]z=d

Enforcing the boundary conditions at the air-ground interface,
we have
u, -u2d u, u

1
— £ (A) e - == g(A) = = h(X)| J_(xp) AdX =0
, m,n €, = m

etjm¢

o‘——qa

(37.a)

. 7 -u,d

+ 2 .

e 3‘“"’[ £ (V) e +g() - h(\)| J_(Ap) dr =0  (37.b)
4]




e e - — ~:]

j

Lo

e

Equations (37.a) and (37.b) must be true for all p and ¢ ,
so that the integrands are zero, 1i.e.,

u

u -u.d u
2 2 2 1 _
E; fm’n(k) e - E; g(xy - EI h(x) =0 (38.a)
-uzd
fm’n(k) e + g(A) - h(X) =0 (38.b)

Solvinag for g(A) and h(X), one obtains

€,u, - £,1 -u,d
172 271 2
g(A) = £ (\) e (39.a)
eluz + €2u1 m,n
2e,u -u.,d
172 2
h(i) = £ (A) e {39.b)
sluz + €51y m,n

The general solution of TM(z)+m n fields for 2z > 4 and
z < d are obtained by replacing g(A), h(X) in (33), (34
with the above formulas. We then have

- e o s e o .o - -

.. r 2¢.u -u_d-u, (z-4d)
T _ . _*imd 172 271 N
Ae =z e -[ TU- T £.u fm’n(k) Jm(kp) e d
0 172 271
(40.a)
+IT +imd |, (2) m
Ae =2 e [hn (kzr) Pn (cos 9)
>
g.u. - €.u -u, (2d-2)
+ f 12 21:. )5 (o) e 2 dA] (40.b)
€, U + €. m,n m
0 172 21
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KPri _
m

Thé solutions given in (40.a) and (4o.b) for 'I‘M(z)o'0
are exactly the same as those of the Sommerfeld integrals for
a vertical electric dipole buried underéround at a depth ad ,
except for the differences between the vector potentials and

the Hertz potentials, as given by (34).

3. The Rotating Magnetic Multipoles, RTE, | Fields

The primary fields of RTE for m=1,2,3,... in
tm

region II are

= AP (ga39) = @239 h(2) ,mElTT (cos ) eIV
T oiaa sty o EImO f £ N A _uzlzldx
0
(41)

For the same reason pointed out by Sommerfeld for a horizontal

dipole, it is required that the vector potentials of the
secondary fields have a z-component in order to satisfy the

boundary conditions of the air-ground interface. Therefore

we assume the secondary fields in region II and the total field

in region I as

*Sec A r

0 r A
Am = (p £ 3d) Am + Amz 2 (42.a)
2T _ a . iy at L at '
AL (6 £ 38) AL+ A 2 (42.b)




- T e

The superscripts "r" and "t" in the above equations denote the

reflected and the transmitted waves due to the lossy-ground

surface.

The

potential components can be represented by the

following integrals of the cylindrical eigenfunctions:

the

4

o4 %

The

vino -u,, (d-2)
- e"“‘"’fg(x) T e e 2 T (43.a)
0
, - -u, (d-z)
=M | 5 () T (A e 2 ax (43.b)
Y4 m
0
. -u, (z-d)
= e”m“’f h(A) 3__ (ko) e T ax (43.¢)
0
. F3 ~u. (z-4)
= eijm"f h,(A) J_(p) e 1 ax (43.4)
0

corresponding electric and magnetic fields for
4

RTE m modes are

(44.Db)
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\
|
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The sufficient conditions for the continuity of the tangential

electric field at z = d are

aaPri AT aat

3m + = m = 5_2 (45.a)
z 2 Jz=a 2 Y=g
r t

[ mzf,_q mz| . _g

The conditions for the continuity of the tangential magnetic

field at z =d are

Pri r t ’
€, [A + A =€, |A (45.¢)
2 [ m sz= 1 [ m]2=d
r t t
[aAmz _ aAmA - [aAm _ (m-1) At]
3z 3z ] 5 3p P m),_q
Pri r :
3A 3A ;
_ m_ , _m _ (m-l) ,Pri _ (m-1) af (45.4d)
ap ap o] m p m z=4

Substituting (43.a) and (43.c) into (45.a) and (45.c), one

can solve for g(A) and h(}).

€.u, - £_.u -u,d
= 1 21 2
g(A) €Uy *+ €50y fm—l,m-l(x) € (46.a)
2e.u -u d.
h(\) = ——22_ ¢ (\) e 2 (46.b)

eluz + ezul m-1,m-1

The functions gz(k) and hz(k) are derived from (45.b)

and (43.4).

(el-ez)Zuzk -uzd

)y = =
gz( ) hz(x) 2ul) fm.--l,m-l“‘)e

(ul+u2)(e + €

192




The complete vector potentials of RTE fields for 2z > 4

and 2z < d are readily obtained as follows:

' o
; 2e.u
.' +I AL s +j (m-1)¢ 22
; Am = (R+39) € .[ E;ﬁzjrgzﬁz fm—l,m-l(k) Jm_l(ko)
! 0
1 -u.d-u, (z-4)
Q
. (e, ~-€,)2u A
5 :Jm¢f 1 272 £ (A) J_(Ap)
+ Ze - -
A (ul+u2)(azul+slu2) m~-1,m-1 m
-u.d-u, (z-4)
- o e 2 1 ar (47.a)
>II oL snns (2) m-1 +j (m-1) ¢
AT = (Xip)h _,(k,r) P o (cos &) e
| % e.u £.u
? : +3 (m- 172
‘ JCEE I l”’f e, felme1™
0 271 172 !
il -u2(2d-z)
Jne1(2e) e . 4di
f . (ul*'uz)(s2u1-+e1u2) m-1,m-1
-u2(2d—z)
Jm(kp) e dax (47.b)

The solutions given in (47.a) and (47.b) for RTE+l
are the same as the Sommerfeld integrals of a buried
horizontal magnetic dipole at a depth d rotating counter-

clockwise (for RTE+1) or clockwise (for RTE_l).
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The electric and magnetic fields for the RTM+m

R Pt

4. The Rotating Electric Multipoles, RTM+m Fields
The general expressions for the primary fields of
RTM*m for m=1,2,3,... in region II are identical to Zgs.

(41), (42) and (43) by replacing A with A, and A  with A_, .

modes are

2 : 2
A )-SR 9°A
> e (m-1) e {m-1) ez
E = -.J_— [k A + - 4+ ——— A ﬁ + _3— 6
3pz o 9p p2 e 9002
3A 3A
m e m(m=-1) mz
+ + = e
[k A p dp p Ae] $ %3 p 3z ®

3A 3A
> e e (m-l) N
H = tj 3z 6 + a"'—z @ -t [ Ae]z
m Aez

The conditions for the continuity of the tangential electric

field at z = d are

aAPrl aA
BZ + 3-5—- - (49.&)




The conditions for the continuity of the tangential magnetic

field at z = 4 are
APn + A:] = At] 39 .c)
€ z=d €lz=q4

r t t
1 - - LraAez 1 Ay (m=1) .t
€2 9z z=d4 ElLaz z=d el 3p P €lz=a

.. Pri r
_al®®e %R me1) ,Pri_ (m-l) r
KL ap o e p el ,=q

(49.4)

Enforcing the boundary conditions at the air-ground interface,

we have
u, - u -u,d
_ 2 1 2
.?(}) T u, +u fm-l,m—l(x) € (50.2)
2 1
2u2 -uzd
i _——-——f 0.
R h(n) = u, +u; m-l,m—l(x) € (5:0.5)

The functions gz(l) and hz(k) are obtained from {(49.b)

- and (49.¢).
, (sl - ez)zuzl -u.d

= - 2
gz(x) - hz(x) - (elu2 + ezul)(ul + uz) fm-l,m-l(x) e

( 50.¢c)

The complete vector potentials of RTM, fields for z > 4

A < s

and 2z < d are obtained as follows:




—— RV —— . ——

®
2u
21 : 3 (m-1) ¢ 2
A, = (x £3y) e f———u2+ul fm—l,m-l“‘) Jm_l(xp)
0
-u,d-u, (2z-d)
e 2 1 dai
- -4
. (e, - € )2u A
A _tjm¢ 1 2
tze f (U, *+u,) (e,u +c 19y Ene1,m-1") In(?e)
0 1 2 271

e S S A (5La)

Kér = (%¢* y)h(Z)(k r) Pg i (cos 6) etj(m-l)¢
o aon tim-1)e (Y27 W1
+ (XRt39) e v fa—z—raz' fm—l,m—l(“ Jm_l(kp)
0
-u2(2d-z)
e dA
€ )2u A
a +3m¢ 2
*e f (u, *u )(ezul-i-e: w) fn-1,m-1 () I (20
-u2(2d-z)
e ax (51.b)

The solutions given in (5l.a) and (5l.b) for RTM, 01
are the same as the Sommerfeld integrals of a horizontal

electric dipole, buried at a depth d, rotating counter-

clockwise (for RTM+1) or clockwise (for RTM_l).




V. RESULTS

Utilizing the exterior modal fields generated by the Generalized
Sommerfeld's Integrals, we are able to compute the scattered surface fields
i of a buried dielectric finite cylinder. The scattering configuration is
shown in Fig. 4. Figure 5 shows the surface area where the fieids will be
computed. Figures 6-10 displace the 3-D and contour plots of the scattered
fields for 700 MHz and 1000 MHz.
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VI. CONCLUSION

There are several numerical ways to solve radiation
or scattering of electromagnetic fields near a lossy half
space; notably, the method of moments [ 11], the extended
boundary condition method [ 12], and the unimoment method
(1}. All the methods in one way or another make use of
the celebrated Sommerfeld integrals. The problem may also be
considered as a limiting case of scattering by two non-
concentric dielectric spheres with one imbedded in the other
[13). But that special approach entails such complex
addition theorems and integral expressions that only the
zeroth order azimuthal mode has been obtained.

In this paper, we have presented the groundwork for the
application of the unimoment method to solvé the scattering
by buried obstacles, which requires the generalization of
the Sommerfeld integrals for multipole sources. For success-
ful numerical appli~cations, we find it necessary to use
spherical harmonics combined with z~-directed potential
vectors. The modal fields so obtained, however, appear to
be inadequate in representing a conventional spherical mode.
While the situation is duly corrected by addition of two
horizontally rotating potential vectors for the lowest order

azimuthal modes, further theoretical investigation of this

unexpected discrepancy is definitely warranted.




The differences between the generalized Sommerfeld
integrals we have put forth and those given by C.T. Tai have
been discussed. It is interesting to note that should we
use C.T. Tai's formulas in the unimoment method, the
numerical objective would be to find £(A) in the integrals,

such as,

@

u,-u -u, (2d-2)
2 71 2 (52)
[f(X) FzTuIJm(XQ) e da

And, using the formulas we derived, the numerical objective

is to find An in the summation of the type

- ]

P Unay Us-U -u, (2d-2)
A m (_. 2) 2 "1 2
z : A, J{ k L k, / uy+u T (Ae) di (53)

n=m 0 1

which is numerically more preferable than (52).

All the formulas presented have been numerically

tested and found to be applicable to solve scattering by

tar.ed obstacles.
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APPENDIX A. Proof of Recurrence Relation 1

n(2)

Bip[h(Z)(kr) P (cos 8)] = -—%gf;lff) Pg(cos 8) sin ©
- %; héz)(kr) sin 6 cos 9 dpg(:zz:)
= & n P ) - 02 k)] - gy Phal(cos 6)
- Q; ;2)(kr) [2;11 Pﬁii(cos 8) - 1; 5 p$(cos 6) ]
= oo 02 (kr) Pl (cos 8) - gy hiZ) (ke) PRYI(cos 9)

Recurrence Relation 1 is obtained by multiplying both sides of

the above equation by -(2m+l).

APPENDIX B. Proof of Recurrence Relation 2

dhéz)(kr)

; 3izlh(z)(kr) Pﬁ(cos 0)] =—3xr  ¢<os ) Pm(cos 8)
‘ ar™ (coss)
: + ]—(]-'— rgz) (kr) Slnze +—T
' _ (n (2) _ (2) |
: = [kr n (kr) n+l(kr)] cos 6 P (cos 8)
+-}— h(z)(kr) * [(n+l) cos 8 Pm(cos 8) -~ (n-m+l) Pm (cos 6)]}
kr n n n+l
¥
= héil(kr) « cos § P:(cos ) + i%%ﬂl h(Z)(kr) P l(cos 8)
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ey g e

- dpomed w12 ko) BT (cos @)
+ ol (202 n (2 kr) - n{2) (ko)) BT (cos @)
72(%% hr(:)l(kr) PT_, (cos )

Hence Recurrence Relation 2 is proved.
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